A Quick Guide to AASHTO LRFD at Caltrans, With reference to present LFD Methods

Concept	AASHTO LRFD Bridge Design	Caltrans Bridge Design
	Specifications w/Caltrans	Specifications, based on
	Amendments	AASHTO Standard Specs
		,
GENERAL		
Scope	Structural and Geotechnical	Structural
Notation		
 Stress 	• f (Note: This change	 σ
	eliminates confusion with	
	σ =standard deviation as	
	used in the calibration.)	
φ	"resistance factor"	 "strength reduction factor"
Primary Design	LRFD-Eqn. 1.3.2.1	LFD-Eqn. 3-10
Method	$\phi R_n \le \Sigma \eta_i \gamma_i Q_i$	$(GroupN) = \gamma[\Sigma \beta_i Q_i]$
	Note: η_i =1.0 at Caltrans	
Safety (LL's)	Calibrated to $P_f = 1:4200$	Experience-based
Scour		
Considerations		
 Footing 	 Top-of-pile cap above 	"Footings on piles may be"
locations	degradation+contraction.	located above the lowest
	Bottom-of-pile-cap above	anticipated scour level
	degradation + contraction +	provided the piles are
	local pier scour, unless	designed for this
	piles are designed for	condition." (4.4.2.2)
Otale:II:	bending (2.6.4.4.2).	Notonosifical
Stability	Factored live loads with FOO channel degradation	Not specified
Caiamia	50% channel degradation	Varios
Seismic	Seismic loads with degradation effects, any	Varies
Slab thickness,	degradation effects, only Table 2.5.2.6.3-1 Additional	Table 8.9.2
min.	cover of 0.5 in. required when	Table 0.9.2
111111.	grinding is anticipated.	
Seismic	CA Seismic Design Criteria	CA Seismic Design Criteria
23.0.1.110	superceeds AASHTO LRFD	superceeds AASHTO Std
	provisions	Specs, CA BDS provisions
Temporary	"temporary" defined as 5	Not addressed
structures	years (3.10.10)	
	MTD 15-14 applies to both	
	LFD and LRFD	
LOADS		

Vehicular LL	HL93 (3.6.1.2): HS20 truck or tandem, AND HS20 lane load	HS20 truck, alternate military vehicle, or HS20 lane load
Short, heavy LL	"Design Tandem"Two 25 ^k axles, 4' c-c (3.6.1.2.3)	"Alternate Military Load"Two 24 ^k axles, 4' c-c (3.7.4)
Vehicular Live Loads, -M and reactions	 90%*[Two trucks, 50 ft min. between axles+lane load] 100%[Two tandems, 50 ft. between ft., rear axles 	HS20 lane loading with shear, moment riders (3.7.6)
Braking;	3.6.4 25% of truck or tandem;	3.9.1 5% of HS 20 truck
longitudinal forces	5% of truck or tandem + lane	DE D7 D44 D40 (E)
Permit Design Live Loads	P15 longdeck (3.6.1.7)	P5, P7, P11, P13 (Figure 3.7.7B)
Column collision	400 ^k (3.6.5.2)	Not addressed
Surcharge	3.11.6.4 (due to LL only;	3.20.3
abutmentsretaining walls	 separate load for earth) 2 to 4 ft depending on ht, may be reduced with slab 2 to 5 ft depending on ht, 2 ft if traffic is > 1ft away 	 2 ft, if traffic is within one-half the wall ht away 2 ft, if traffic is within one-half the wall ht away
Temperature	3.12	3.16
Longitudinal	TU—Procedure A w/2 air ranges; Procedure B w/maps and movement eq.	3 air ranges, concrete and steel
 Vertical 	TG—FYI; not in CTBridge	 not addressed
Load Factors	Table 3.4.1-1	Table 3.22.1A
Dead load	 Maximum and minimum γ's provided in Table 3.4.1-2 	• Footnote to Table 3.22.1A regarding β = 0.75
Wearing surface, utilities	Less predictable than deck, girders; higher load factor	Same load factor as deck, girders
Dynamic Load Allowance (Impact)	• IM=33% (Table 3.6.2.1-1) Note: 75% at joints; 15% for fatigue	• 3.8.2 <i>I</i> =50/(<i>L</i> +125)
Multiple Presence	Included in load distribution tables; 1.2 for 1 lane, 1.0 for 2 lanes, 0.85 for 3 lanes, 0.65 for 4 lanes	• 100% for 2 lanes; 90% for 3 lanes; 75% for ≥ 4 lanes
Load	Table 3.4.1-1	Table 3.22.1A
Combinations	_	
Service loads	Strength I	Group IH
Overloads	Strength II (2 lanes)	Group IPC
Widely-spaced	Strength II (refined anal.)	Group IPW, Group IP3D
Subst. Design	Strength II-sub	Group IPW
Wind	Strength III	Group II

DL onlyWind+LLEarthquakePrestressingFatigue	 Strength IV (long-span br.) Strength V Extreme Event I Service I, III Fatigue I, II-III (coming) 	 (not addressed) Group III Group VII Group I, Table 3.22.1B (not addressed in Chpt. 3)
ANALYSIS LL Distribution for	Note: axles not contributing to extreme force effect are neglected (3.6.1.3.1) • Expressions in 4.6.2.2 Moment, interior girder, 2b-1 Moment, exterior girder, 2d-1 Shear, interior girder, 3a-1 Shear, exterior girder, 3b-1 • Whole-width designtake interior girder factors, above, and multiply by number of girders. Range of applicability expanded per study by UCD. • Strength method with equivalent strip widths, Table 4.6.2.1.3-1. HL93 design moments in A4-1. • For one design lane loaded, Eq. 4.6.2.3-1 $E = 10.0 + 5.0\sqrt{L_1W_1}$ • For two design lanes	 "s-over" per Table 3.23.1, unlimited range of applicability "overall width÷7" per Table 3.23.1; unlimited range of applicability Working Stress (3.24.3.1); M=P*(S+2)/32 ft-k/ft Distribution width, E, for one lane of traffic is (4+0.06S)<7ft, for truck loads; and 2E for lane loads (reinforcement
	loaded, Eq. 4.6.3.2-2 $E = 84.0 + 1.44 \sqrt{L_1 W_1} \le \frac{12.0W}{N_L}$ $L_1 = \text{span length} < 60 \text{ ft}$ $W_1 < 30 \text{ ft (1 lane);} 60 \text{ ft (2+lane)}$ $\bullet \text{Edge bm dgn1 lane of wheels (4.6.2.1.4b)}$	 Parallel to traffic). 3.24.3.2 Not designed for, but 2 #10's T & B (BDA)
Skew—LL's	BDA p5-32 or shell-model	BDA p5-32
•	4.6.2.5 CA amendments, AASHTO '06 Interims	Not addressed
CONODETE		
CONCRETE	11.15.10	DO 100
	Unified Concrete Design	RC and PS separate
Units, Terminology	 f'_c (KSI) compression member 	f'_c (PSI)column

	flexural member	• beam
Lightweight	'05 Interims for shear, flexure	Recent research NOT
concrete	based on recent research	incorporated
Service load		SLD Group I on Table
	Service I—compression	•
combo's for	Service IIItension	3.22.1B of BDS April '00
allowable f check	Table 3.4.1-1, AASHTO LRFD	
Allowable Stresses		
 Concrete 	Before losses	Before losses (9.15.2.1)
	• Compression (5.9.4.1.1):	Compression, post-
	f_{ci} =0.60 f_{ci}	tensioned: f_{ci} =0.55 f_{ci}
		 Compression, pre-
		tensioned: f_{ci} =0.60 f_{ci}
	• Tension (Table 5.9.4.1.2-	• Tension: 200 psi or $3\sqrt{f'_{ci}}$
	1): $0.0948\sqrt{f'_{ci}}$ < 0.200 ksi	psi w/o bonded
	w/o bonded reinforcement;	reinforcement; $7.5\sqrt{f'_{ci}}$
	$0.24\sqrt{f'_{ci}}$ w/ bonded	w/bonded reinforcement
	reinforcement	III Seriaca remiereement
	After losses, compression	After losses (9.15.2.2),
	(Table 5.9.4.2.1-1):	compression:
	• DL+PS, only: 0.45 f_c	• 0.40f' _c
	DL+PS+LL: 0.60f' _c	0.407 c
	0.5(DL+PS)+LL: 0.40f' _c	
	After losses, tension (Table	After losses (9.15.2.2),
	5.9.4.2.2-1):	tension:
		1
	• Bonded tendons: $0.190\sqrt{f_c}$	• $6\sqrt{f_c}$ psi
	Unbonded tendons: not	• Env. Area III, $3\sqrt{f_c}$ psi
	used at Caltrans	• DL, only: 0
Stressing Steel	At the sector (Table 5.0.0.4)	
	At transfer (Table 5.9.3-1)	At transfer (9.15.1)
	• Post-tensioned: 0.75 f_{pu}	• Post-tensioned: 0.70f's
	• Pre-tensioned: 0.75 f_{pu}	• Pre-tensioned: 0.70f's
		 Pre-tensioned, low-
		relaxation strand: 0.75f's
	In service (Table 5.9.3-1)	In service (9.15.1)
	• 0.80*0.90 <i>f</i> ′ _s	• 0.80*0.90 <i>f</i> ′ _s
	Low-relaxation strand:	Low-relaxation strand:
	0.80*0.85 <i>f</i> ′ _s	0.80*0.85 <i>f</i> ′ _s
Losses (post-	(5.9.5)	(9.16.2.2)
tensioning)		, ,
Anchor Set	• 0.375 in.	• 0.375 in.
Friction	 K=0.0002; μ= (varies) 	• K=0; μ=0.2
Elastic	• ES=[(N-1)/2N]*f _{cap} E _p /E _{ci}	 Included with estimated
Shortening	- LO [('V ')'Z'V] 'CGPLP'LC'	long-term losses
Long-term	• 25 kgi (CA amandad nor	00 000 :
	25 ksi (CA amended per LICSD 5 0 5 3)	• 20,000 psi
losses (low lax)	UCSD, 5.9.5.3)	

Losses (pre-		(9.16.2.2)
tensioning)		,
 Elastic Shortening 	$\bullet ES = f_{cgp} E_p / E_{ci}$	 Included with estimated long-term losses
Long-term	• Shrinkage=12(1.7-0.01H)(5/(1+f'ci)	• 22,000 psi
losses (low lax)	Creep= $10(f_{pi}A_{ps}/A_g)(1.7-0.01H)(5/(1+f'_{ci}))$	
	Relaxation=2.5 ksi	
Total losses	(Totaled in Eq. 5.9.5.3-1) • ES+long-term losses	05 000'
Flexural Design	(Unified Concrete Theory)	• 35,000 psi
(concrete)	5.7.3.2	
 capacity— rectangular 	$M_n = A_{ps} f_{ps} (d_p - \frac{a}{2}) +$	Conventional RC
section	$A_s f_y (d_s - \frac{a}{2})$	$M_n = [A_s f_y (d - \frac{a}{2})]$ (8-16)
	$\begin{bmatrix} I_{sJy}(W_{s}) \\ 2 \end{bmatrix}$	Prestressed Concrete (9-13)
		$M_n = A_{*s}^* f_{su}^* d(1 - 0.6 \frac{\rho^{**} f_{su}^*}{f_c^*})$
capacity—	$M_n = A_{ps} f_{ps} (d_p - \frac{a}{2}) +$	Conventional RC (8-19)
flanged section	$A_s f_y (d_s - \frac{a}{2}) +$	$M_n = (A_s - A_{sf}) f_y (d - \frac{a}{2}) +$
	$+0.85f'_{c}(b-b_{w})h_{f}(\frac{a}{2}-\frac{h_{f}}{2})$	$A_{sf}f_{v}(d-0.5h_{f})$
		Prestressed Concrete (9-14)
		$M_n = A_{sr} f_{su}^* d(1 - 0.6 \frac{A_{sr} f_{su}^*}{b' df'_c}) +$
		$0.85 f_c'(b-b')t(d-0.5t)$
maximum	5.7.2.1; 5.7.3.3.1	Commention of BC
reinforcement	Conventional RC	Conventional RC $\rho_{\text{max}} \leq 0.75 \rho_{bal}$ (8.16.3.1.1)
	Limit strain to 0.004	Tinax Tout C
	Prestressed—use appropriate	Prestressed Concrete(9.18.1)
	overstrength (resistance) factor, instead (CA '05	$\rho^* \frac{f_{su}^*}{f'_c} \le 0.30 (9-20)$
	amendment, '06 AASHTO Interim)*	$\frac{A_{sr}f_{su}^*}{b'df_c'} \le 0.30 (9-21)$
	interim)	$b'df_c$ Conventional RC (?)
 minimum reinforcement 	$\varphi M_n \ge \min(1.2M_{cr}, 1.33M_u)$	Prestressed Concrete
	100	$\varphi M_n \ge 1.2 M_{cr}$ (9.18.2.1)
φ_b (strength)	*PC varies from 0.85 in	

	compression-controlled to 1.0 in tension-controlled regions; CIP PS—0.85 to 0.95; RC—0.85 to 0.90	φ=0.90 (except Group VII)
Crack control	$s \le \frac{700\gamma_e}{\beta_s f_s} - 2d_c; \text{ decks } \gamma_e = 0.75$ $\beta_s = 1 + \frac{d_c}{0.7(h - d_c)} (5.7.3.4-1)$	$f_s = \frac{z}{(d_c a)^{\frac{1}{3}}} \le 0.6 f_y (8-61)$
	$\rho_s = 1 + 0.7(\mathbf{h} - \mathbf{d}_c) \tag{3.7.3.4.1}$	
Bar cut-offs for positive or negative moment reinforcing	Based on flexural and shear resistance (horizontal component of inclined compression diagonals) needed at section, plus I_d requirements $5.8.3.5-1$ $T = \frac{M_u}{d_v \phi} + 0.5 \frac{N_u}{\phi} + \left(\frac{V_u}{\phi} - 0.5 V_s - V_p\right) \cot \theta$	$l_d \le \frac{M}{V} + l_a$
Shear (concrete) Resistance (typical flexural members)	"Sectional Method"- V_c now depends on applied strain, ε . Total is lesser of (5.8.3.3): $V_n = V_c + V_s + V_p$ $V_n = 0.25 f'_c b_v d_v + V_p$ for which $V_c = 0.316 \beta \sqrt{f'_c} b_v d_v$ $V_s = \frac{A_v f_y d_v (\cot \theta + \cot \alpha) \sin \alpha}{s}$ Obtain θ and β by calculating strain (ε) and reading off Fig. 5.8.3.4.2-1. One iteration required. Alternatively, use $\beta = \frac{4.8}{1 + 1500\varepsilon_x}; \ \theta = 29 + 7000\varepsilon_x$ (5.8.3.4.3)	V_c based on flexural cracking + empirical safe margin Convention RC $V_n = V_c + V_s$ where $V_c = 2\sqrt{f'_c}b_wd$ $V_s = \frac{A_vf_yd}{s}$ Prestressed Concrete $V_n = V_c + V_s$ where $V_s = \frac{A_vf_sd}{s}$, and V_c is the lesser of V_{ci} and V_{cw} $V_{ci} = 0.6\sqrt{f'_c}b'd + V_d + \frac{V_iM_{cri}}{M_{max}}$ $V_{cw} = (3.5\sqrt{f'_c} + 0.3f_{pc})b'd + V_p$
Short, deep members	 Use Strut-and-Tie Distance from point of zero-shear to face of support is > 2d Plane sections don't remain plane i.e. abrupt change in cross-section i.e. Load causing more than ½ of the shear at a support is 	(same as above)

 φ_ν Torsion Tendon debonding Fatigue resistance reinforcing bars 	closer than 2d from the face of support • 0.90 Addressed Addressed (5.11.4.3) • Check not required for	0.85 Not addressed Not addressed
Torsion Tendon debonding Fatigue resistance	0.90 Addressed Addressed (5.11.4.3)	Not addressed
Torsion Tendon debonding Fatigue resistance	Addressed (5.11.4.3)	Not addressed
Tendon debonding Fatigue resistance	Addressed (5.11.4.3)	
Fatigue resistance	` ,	LIVULAUULESSEU
•		
	deck slabs in multi-girder	
	applications. Required	
	only if compressive stress	
	is less than twice the	
	tensile live load stress from	
	fatigue load combination.	
	5.5.3.2 Reinforcing bars:	$f_r = 21 - 0.33 f_{\min} + 8 \left(\frac{r}{h}\right)$ ksi
	$f_r = 21 - 0.33 f_{\min} + 8 \left(\frac{r}{h}\right)$ ksi	$\int_{r} f(x) dx = \int_{r} f(x) d$
	18.0 ksi for radii of	not addressed
 prestressing 	curvature>30ft; 10.0 ksi for	
tendons	radii of curvature<12.0 ksi.	
Column φ	Varies; terminology changed	φ =0.75 with spirals
,	to "compression-controlled"	φ =1.00 for seismic
Compression	5.7.4.4P _{n(max)} same as LFD	8.16.4.2P _{n(max)}
	5.7.4.5—biaxial same as LFD	8.16.4.3—biaxial
Shear transfer	5.8.4	8.16.6.4.4
(shear friction)	$V_n = cA_{cv} + \mu [A_{vf}f_y + P_c]$	$V_n = A_{vf} f_y \mu$
	not to exceed:	not to exceed:
	$V_n \le 0.2 f_c A_{cv}$ or $V_n \le 0.8 A_{cv}$	$V_n \le 0.2 f_c A_{cv}$ or $V_n \le 0.8 A_{cv}$
Pierwalls	5.10.11.4.2	MTD 6-5 ρ_h > 0.0025; 12-in.
(reinforcing reqm.)	ρ_{V} , ρ_{h} > 0.0025; 18-in. max c-c	c-c horz., 6-in. max c-c vert.
Inverted-T Bent		
Cap	5.13.2.5	5 1
effective ledge	• Pad width + $4*a_V$	Pad width + effective
width, shear	$(a_V \text{ is distance to shear reinf.})$	depth(?)
•		Pad width +ellective depth
. •	•	Pad width + effective
	·	
· ·	1 .	•
momitod othrapo		$n = \frac{1}{N} \int_{\mathcal{Y}} y(\mu \sin \alpha_f + \cos \alpha_f)$
primary		2.4
reinforcement	_	$\bullet A_s \ge \frac{2A_{vf}}{3} + A_n; A_f + A_n$
tension	$\bullet A_h \ge 0.5(A_s - A_n)$	$\bullet A_h \ge 0.5(A_s - A_n)$
reinforcement		
Footing Shear	5.13.3.6	8.16.6.2.1
primary	3	 Pad width +effective depth Pad width + effective depth V_n = A_{vf} f_y (μsin α_f + cos α_f) A_s ≥ 2A_{vf}/3 + A_n; A_f + A_n

One-way Action	Sectional methodsee shear design, above, and 5.8.3.4.1.	$V_{n} = V_{c} + V_{s}; V_{s} = \frac{A_{v} f_{y} d_{v}}{s}$ $V_{c} = (1.9 \sqrt{f_{c}} + 2,500 \rho_{w} \frac{V_{u} d}{M_{u}}) b_{w} d$
Two-way Action	$V_n = V_c + V_s \le 0.192 \sqrt{f_c'} b_o d$ $V_c = 0.0632 \sqrt{f_c'} b_o d_v \text{ ksi}$ $V_s = \frac{A_v f_v d_v}{s} \text{ ksi}$	or $V_c=2\sqrt{f_c'}b_wd$ $V_c=(2+\frac{4}{\beta_c})\sqrt{f_c'}b_od\leq 4\sqrt{f_c'}b_od$ psi
On over a retail	AASHTO Guide Specs have	Not included (co. 200
Segmental	· ·	Not included (see '99
Construction	been incorporated (5.14.2)	AASHTO Guide Specs)
OTEEL		
STEEL	Address	Not addressed
Curved girders	Addressed	Not addressed
Connections and splices	100% of factored axial, flexural, shear resistance of members (6.13.1, CA amendment to match BDS)	10.18, 10.19
Fatigue resistance (steel) • weld detail categories • stress range	• similar to AISC tables • $(\Delta F)_n = (\frac{A}{N})^{\frac{1}{3}} \ge \frac{1}{2}(\Delta F)_{TH}$; where A is a constant, N = (365days)(75yr)(ADTT), ΔF_{TH} is specified in Table 6.6.1.2.5-3 for categories A through F	 similar to AISC tables specified in Table 10.3.1 for categories A through F
FOUNDATIONS	DOWNLOAD '06 INTERIMS!!!	
Spread Footings	 Very similar to Std. Spec 16th Ed. (BDS '00) Use service limit state Strength limit state; Terzaghi and Meyerhof's Eqn; inclined loading considered Strength F.S. = ΣγQ/ΣφR where γ is between 1.25 and 	 OGS internal procedure used in lieu of BDS '00? Working stress used Working stress used; Terzaghi and Meyerhof's Eqn; inclined loading not considered F.S.=1.5 for sliding; 3.0 for bearing
Total scour	 1.75, φ is between 0.45 and 0.90 (Table 10.5.5.2.1-1) Unfactored LL's; φ 's = 1.0 	Not addressed

Deep Foundations Skin friction; uplift resistance Punching thru strong soil into weaker soil Depth of fixety Factors of safety— strength Total scour	 Provided; strength limit state Suggested Provided F.S. = ΣγQ/ΣφR, where φ's Piles—Table 10.5.5.2.2-1; Shafts—Table 10.5.5.2.3-1 Uplift resistance, φ = 0.8 	 OGS internal procedure OGS internal procedure Not published by OGS F.S. = 2.0; Groups I-VI, φ = 0.75 Group VII, φ = 1.00
WALLS, ABUTS Design Methodology	 Service limit state for excessive movement; overall stability Strength limit state for bearing, sliding, base contact, pullout of anchors, structural failure. Resistance factors in Table 11.5.6-1 (except structural) 	Service load method
Rigid Gravity Walls, Abuts F.SSliding, bearing Ret. Wall stability Overturning; bearing resistance	 ΣγQ/ΣφR where γ is between 1.25 and 1.75, φ same as for spread ftgs Service (stability): φ = 0.65 or 0.75 (11.6.2.3) (Strength) eccentricity <b (rock)<="" (soil)="" 3b="" 4="" 8="" li="" or=""> k_o=1-sinφ (3.11.5.2); k_o =1-sinφ'(OCR)^{sin φ'} k_a (based on Coulomb, 3.11.5.3) 	 F.S.≥1.5 (sliding); 3.0 (bearing) Trial Wedge Method (Chp. 5, Aug. '03) eccentricity <b (rock)<="" (soil)="" 4="" 6="" b="" li="" or=""> k₀=1-sinϕ(1+sinβ) where b is slope angle of backfill (5.5.5.2); k₀ after Navy '71 (same as '82) k₀ (Coulomb5.5.5.3)
Non-gravity Cantilevered Walls Anchored Walls • stability • soil failure	 11.8 Spacing between discrete vertical wall elements (11.8.5.2) addressed 11.9 same as ret. walls, above ΣγQ/ΣφR where γ is between 1.35 and 1.50, φ is 0.90 for anchor tension, between 0.50 and 0.70 for rock/soil failure (φ=1.0 if 	F.S.=2.0 for structural anchor capacity (1.5 for safety against rotation) F.S.=1.5 for proof-tested ground anchor, 2.0 to 2.5 soil bond, 2.5 to 3.0 rock bond

	proof test is done)	
MSE Walls	11.10 FS varies for sliding, bearing, over-turning similar to spread footings: $\Sigma \gamma Q / \Sigma \phi R$ Coulomb Theory encouraged (simplifies to Rankine)	F.S.≥1.5 for sliding F.S.≥2.0 for overturning, and eccentricity < <i>B</i> /6 F.S.≥2.0 for bearing Rankine Theory encouraged
Prefab Modular Walls	11.11 • sliding $\Sigma \gamma Q/\Sigma \phi R$ where γ is between 1.25 and 1.75, ϕ	F.S.≥1.5 for sliding
	is same as spread footings bearing— $\Sigma \gamma Q/\Sigma \phi R$ where γ is between 1.25 and 1.75,	F.S. <u>≥</u> 3.0 for bearing
	 \$\phi\$ is same as spread ftgs overturning—max 80% of soil-fill is effective resisting 	F.S.≥2.0 for overturning, and eccentricity <b 6<="" td="">
CULVERTS	Load—32 ^k axle (3.6.1.3.3):	Load—HS-20 (6.3)
Load distribution	 < 2 ft fill, traffic to span—strip widths in 4.6.2.10.2; traffic 90° to spantreat as deck; > 2 ft fill, spread from tire contact area to 1:1.15 times depth (3.6.1.2.6) 	 RC boxes: < 2 ft fill, treat as slab bridge; ≥ 2 ft fill, point load spread to 1:1.75 (6.5.2)
RAILINGS Design methodology Overhang design for collision load	 Performance-based (Section 13; forces for design of specimen in A13) Load combo's and load distribution for parapets, post-and-beam, in A13.4 	Not addressed in SpecsNot addressed in Specs
BRGS; JOINTS		
Steel elastomeric bearings	 (14.7.5) Method B (14.7.6) Method A—requires more testing, QC 	(14.6.5)(14.6.6)
Modular joints	Addressed (14.5.6.9)	Not addressed